Intra- and Inter-facility Logistics

Jessica L. Heier Stamm, Ph.D.
Assistant Professor
College of Engineering Keystone Research Faculty Scholar Industrial and Manufacturing Systems Engineering

LOGISTICS DECISIONS

Kansas State
UN IVERS I TY

What is Logistics?

- Council of Supply Chain Management Professionals (CSCMP) definition
- "Logistics management is that part of supply chain management that plans, implements, and controls the efficient, effective forward and reverse flow and storage of goods, services and related information between the point of origin and the point of consumption in order to meet customers' requirements."
- Key Ideas
- Forward and reverse flow
- Efficient and effective
- Plans, implements, and controls
- Part of supply chain management (SCM)

...forward and reverse flow...

goods, services, information

EANSAS STATD

UNIVERSITY

...efficient, effective...

- Effectiveness: delivering on what is committed
- Price
- Quality
- Response time
- Flexibility

Achieving desired objective while minimizing costs

- Efficiency: using resources in the "best" way

...plans, implements, and controls...

-Corporate Objectives -Number of Facilities
-Facility Location \& Capacity
-Resource Requirements
-Material Flow
-Resource Allocation
-Capacity Allocation
-Inventory Policies
-Scheduling
-Routing
-Warehousing
-Tracking/Tracing

Supply Chain Network Importance

- Cost
- 2016 logistics costs in the U.S.: 7.5% of GDP, or $\$ 1.39$ trillion
CSCMP's $28^{\text {th }}$ Annual State of Logistics Report, Council of Supply Chain Management Professionals, prepared by A.T. Kearney
- Environmental Impact
- Packaging
- Fuel emissions
- Competitive Advantage
- Speed
- Flexibility

Key Decisions

- Intra-facility logistics (warehousing)
- Warehouse design
- Which skus where
- Equipment, technology
- Inter-facility logistics (transportation)
- Mode choice
- Comprehensive network planning
- Routing
- Fleet and driver assignment

DECISION SUPPORT TOOLS: MODE CHOICE

Mode Choice Problem

- Given the cost profiles of different modes for a particular shipment, which option is most economical?
- Normalize all costs to common unit and time
- Compare total cost of each mode

Logistics System Cost Classification

- Useful to classify costs under essential types, e.g.,
- Transportation costs: movement via vehicle; loading/unloading
- Handling costs: packing/unpacking boxes, bags, pallets; intra-facility storing and picking movements
- Holding costs: opportunity cost of capital for time waiting
- Facility rent costs: economic "rent" for facility space, storage infrastructure, and maintenance
－ 1 plant， 1 product
－Produce 10 units／day
－Keep no safety stock
－Space cost＝\＄20／unit＊year
－Item value＝\＄500／unit

Example

－ 1 warehouse
－Avg demand 10 units／day
－Keep 100 units safety stock
－Space cost＝\＄25／unit＊year
－Item value＝\＄512／unit

Inventory holding cost rate＝ 25% of value per year
－Railcar capacity $=400$ units
－Cost $=\$ 1200 /$ carload
－Transit time $=20$ days
－Truck capacity $=100$ units
－Cost＝\＄700／truckload
－Transit time＝ 3 days

UNIVERSITY
－ 1 plant， 1 product
－Produce 10 units／day
－Keep no safety stock
－Space cost＝\＄20／unit＊year
－Item value＝\＄500／unit

Costs at the Plant

－Inventory space cost＝（\＃units per shipment）x（space cost per unit＊year）
$=q$ units $\times \$ 20 /$ unit * year
$=$（avg inventory held）\times（value per unit）\times（inventory holding cost rate） $=q / 2$ units $\times \$ 500 /$ unit $\times 25 \%$ per year

Kansas State

Example

－ 1 plant， 1 product
－Produce 10 units／day
－Keep no safety stock
－Space cost＝\＄20／unit＊year
－Item value＝\＄500／unit
－ 1 warehouse
－Avg demand 10 units／day
－Keep 100 units safety stock
－Space cost＝\＄25／unit＊year
－Item value＝\＄512／unit

Costs at the Plant

－Inventory space cost
－Inventory holding cost
＝（\＃units per shipment）x（space cost per unit＊year）
$=q$ units $\times \$ 20 /$ unit * year
$=$（avg inventory held）\times（value per unit）\times（inventory holding cost rate） $=q / 2$ units $\times \$ 500 /$ unit $\times 25 \%$ per year

Costs at the Warehouse

－Inventory space cost
－Inventory holding cost
＝（\＃units per shipment＋safety stock）\times（space cost per unit＊year）
$=(q+100$ units $) \times \$ 25 /$ unit * year
$=$（avg inventory held）\times（value per unit）\times（inventory holding cost rate）
$=(q / 2+100$ units $) \times \$ 512 /$ unit $\times 25 \%$ per year

Example

- 1 plant, 1 product
- Produce 10 units/day
- Keep no safety stock
- Space cost = \$20/unit*year
- Item value = \$500/unit

Costs in Transit

- Pipeline inventory cost
$=(\#$ units shipped) \times (time in transit) \times (value per unit)
x (inventory holding cost rate)
$=3650$ units \times (time in transit) x $\$ 506 /$ unit $\times 25 \%$ per year
- Transportation cost
$=$ (cost per shipment) \times (\# shipments per year $)$
- 1 warehouse
- Avg demand 10 units/day
- Keep 100 units safety stock
- Space cost = \$25/unit*year
- Item value $=\$ 512 /$ unit

Railcar capacity = 400 units
Cost $=\$ 1200 /$ carload
Transit time $=20$ days

Truck capacity = 100 units
Cost = \$700/truckload
Transit time $=3$ days

UNIVERSITY

Example

COST SUMMARY USING FULL CONTAINERS

Mode	At Plant	At Warehouse	Pipeline Inventory	Transport	Total Cost
Rail	$\$ 33,000$	$\$ 50,900$	$\$ 25,300$	$\$ 10,950$	$\mathbf{\$ 1 2 0 , 1 5 0}$
Truck	$\$ 8,250$	$\$ 24,200$	$\$ 3,795$	$\$ 25,550$	$\mathbf{\$ 6 1 , 7 9 5}$

- What are the key factors?
- Large container size, if used, increases inventory space costs
- Long transit time increases inventory holding costs
- What's missing?
- Stochastic, dynamic components
- Other costs, e.g., emissions

DECISION SUPPORT TOOLS: NETWORK PLANNING

Shipper Problem

- Given a demand profile, supply sources, and distribution network, what flow through the network optimizes total cost?
- Choose appropriate planning horizon
- Capture relevant costs

Physical Network Representation

Time-expanded Network Representation

P1

P1

P2

DC R1

$$
t=1
$$

$t=2$
$t=3$
$t=\ldots$

Time-expanded Network Representation

$\frac{\text { Kansas State }}{\text { UNIVERSITY }}$

Network Flow Optimization

Network Representation

Arcs in the network

Costs on each arc

Capacities on each arc

Nodes in the network

Optimization Model

Decision variables (how much flow?)

Objective function contribution

Flow capacity constraints
Flow conservation constraints
(out = in)

Network Flow Optimization

- Easy case: "imaginary" mode with linear costs
- Minimum cost network flow model
- Easy (computationally) to solve, even for largescale networks
- Foundation of all network optimization approaches
- Generalizations
- Multi-commodity flow
- Economies of scale

Resources

- Warehouse management principles and tools
- https://www.warehouse-science.com/
- MHI (formerly Material Handling Institute), material handling, logistics, and supply chain industry group
- http://www.mhi.org/
- Council of Supply Chain Management Professionals
- http://cscmp.org/
- Institute of Industrial and Systems Engineers
- Main site: http://www.iise.org/Home/
- Logistics and Supply Chain Division: http://www.iise.org/details.aspx?id=33757
- Institute for Operations Research and the Management Sciences
- Main site: https://www.informs.org/
- Transportation Science and Logistics Society: http://connect.informs.org/tsl/home
- Railway Applications Section: http://connect.informs.org/railway-applications/home
- Section on Location Analysis: http://connect.informs.org/sola/home

